Sinensis infection. Virchows Arch. 2008;453:5898. 5. Choi D, Lim JH, Lee KT, Lee JK, Choi SH, Heo JS, et al. Cholangiocarcinoma and Clonorchis sinensis infection: a case ontrol study in Korea. J Hepatol. 2006;44:10663. 6. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, et al. Epidemiology of cholangiocarcinoma: an update focusing on threat things. Cancer Sci. 2010;101:5795.22.23.24.25.26. 27. 28.Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. WHO International Agency for Research on Cancer Monograph Operating Group. A evaluation of human carcinogens – Component B: biological agents. Lancet Oncol. 2009;10:321. Lechner S, M ler-Ladner U, Schlottmann K, Jung B, McClelland M, R choff J, et al. Bile acids mimic oxidative anxiety induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis. 2002;23:1281. Bae YA, Ahn DW, Lee EG, Kim SH, Cai GB, Kang I, et al. Differential activation of diverse glutathione transferases of Clonorchis sinensis in response towards the host bile and oxidative stressors. PLoS Negl Trop Dis. 2013;7:e2211. Bae YA, Kim JG, Kong Y. Phylogenetic characterization of Clonorchis sinensis proteins homologous for the sigma-class glutathione transferase and their differential expression profiles. Mol Biochem Parasitol.56946-65-7 uses 2016; 206:46-55. doi:ten.1016/j.molbiopara.2016.01.002. Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360:16. Oakley AJ. Glutathione transferase: new functions. Curr Opin Struc Biol. 2005;15:29784. Morphew RM, Eccleston N, Wilkinson TJ, McGarry J, Perally S, Prescott M, et al. Proteomics and in silico approaches to extend understanding with the glutathione transferase superfamily in the tropical liver fluke Fasciola gigantica. J Proteome Res. 2012;11:58769. Torres-Rivera A, Landa A. Glutathione transeferases from parasites: a biochemical view. Acta Trop. 2008;105:9912. Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, et al. Identification, characterization, and crystal structure of your omega class glutathione transferase.6-Bromo-2-fluoro-3-methoxybenzoic acid site J Biol Chem.PMID:23551549 2000;275:2479806. Hansen AM, Gu Y, Li M, Andrykovitch M, Waugh DS, Jin DJ, Ji X. Structural basis for the function of stringent starvation protein a as a transcription issue. J Biol Chem. 2005;80:173801. Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG. Characterization of the omega class of glutathione transferases. Techniques Enzymol. 2005;401:789. Schmuck EM, Board PG, Whitbread AK, Tetlow N, Cavanaugh JA, Blackburn AC, Masoumi A. Characterization on the monomethylarsonate reductase and dehydroascorbate reductase activities of omega class glutathione transferase variants: implications for arsenic metabolism as well as the age-atonset of Alzheimer’s and Parkinson’s illnesses. Pharmacogenet Genomics. 2005;15:49301. Paul S, Jakhar R, Bhardwaj M, Kang SC. Glutathione-S-transferase omega 1 (GSTO1-1) acts as mediator of signaling pathways involved in aflatoxin B1induced apoptosis-autophagy crosstalk in macrophages. Totally free Radic Biol Med. 2015;89:12180. Girardini J, Amirante A, Zemzoumi K, Serra E. Characterization of an omegaclass glutathione S-transferase from Schistosoma mansoni with glutaredoxinlike dehydroascorbate reductase and thiol transferase activities. Eur J Biochem. 2002;269:55121. Liebau E, Eschbach ML, Tawe W, Sommer A, Fischer P, Walter RD, et.